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Evolution of Disturbances in Entropy Layer
on Blunted Plate in Supersonic Flow
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Linear and nonlinear stability analyses of the entropy layer over a blunted plate are discussed. Results of the
linear stability theory are compared with the direct numerical solution of the Euler equations when a disturbance
of prescribed frequency is imposed on the mean flow. A solver of the Euler equations based on the space–time
conservation element/solution element method predicts linear and nonlinear dynamics of unstable disturbances
with high accuracy. The nonlinear effect demonstrates a trend to saturation of the entropy-layer disturbances.

Nomenclature
c = phase speed
L = length of the plate
M = freestream Mach number
P = pressure
p = pressure disturbance
Re = Reynolds number
r = leading-edge radius
T = temperature
t = time
U, V = streamwise and vertical velocities
u, v = disturbances of streamwise and vertical velocities
x, y = streamwise and vertical coordinates
α = wave number
γ = specific heat ratio
δ = boundary-layer thickness
δe = entropy-layer thickness
ε = δ/L
εm = initial amplitude of mass flux disturbance,

(ρu)′/(ρ∞U∞)
ε0 = r/L
θ = temperature disturbance
µ = viscosity
ρ = density
ψ = stream function
ω = frequency

Subscripts

c = critical
i = imaginary
r = real
∞ = freestream
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I. Introduction

T HE laminar–turbulent transition on a hypersonic vehicle sur-
face depends on many parameters. One of them is the leading-

edge bluntness, which can affect the transition Reynolds num-
ber dramatically. Shock-tunnel experiments1 conducted on blunted
cones at the freestream Mach number M = 5.5 revealed that the in-
crease of the nosetip bluntness leads to the displacement of the tran-
sition locus downstream until its maximum value. Further increase
of the nosetip radius causes a reverse movement of the transition
locus. Wind-tunnel experiments2 at M ≤ 9.3 showed that the max-
imum reverse displacement rapidly increases with the freestream
Mach number. The transition reverse was also observed on blunted
hollow cylinders and cones3,4 at M = 3.1, as well as on a blunted flat
plate5 at M = 2. These and other data of early experiments have been
summarized by Wilson.5 Similar trends have been observed in wind-
tunnel experiments6,7 at M = 6 and M = 9. Small nosetip bluntness
increases the transition Reynolds number Retr, whereas large blunt-
ness causes a drastic reduction of Retr, relative to the sharp cone.

There were attempts to explain transition reversal on the basis of a
surface roughness effect. Lysenko and Maslov8 performed transition
measurements on very cold blunted plate and concluded that ice
crystals on the model surface could trip the boundary layer. Batt and
Legner9 reviewed the blunt-body experimental results emphasizing
the nosetip roughness effect on transition reversal. However, much
of the data did not seem to support the roughness argument.

Stability theory and experiment may help to identify the cause of
the transition reverse. In a supersonic flow, the blunted leading edge
of an aerodynamic body causes the formation of an upstream curved
bow shock. The streamlines passing through the shock form an en-
tropy layer of rotational inviscid flow with nonuniform velocity and
temperature distributions. In turn, a viscous laminar boundary layer
grows over the body surface at the bottom of the entropy layer. Inter-
action between mean flows of these two layers can change stability
characteristics of the boundary layer and affect the transition locus.

Stability experiments10 on slender blunted cones at M = 8 have
provided an insight into this mechanism. For small nosetip blunt-
ness, the boundary layer is stable to large local Reynolds numbers,
and the disturbances, which enter the boundary layer, are initially
attenuated. For a large bluntness, there are significant disturbances
in the entropy layer above the boundary layer, and they can be sev-
eral times larger than the freestream fluctuations. The entropy-layer
disturbances enter the boundary layer as the entropy layer is swal-
lowed. After entering the boundary layer, the disturbances proceed
to grow rapidly at relatively small Reynolds numbers. This growth
may be due to a mechanism analogous to the forcing concept de-
scribed by Kendall11 and Mack.12 It may be that the entropy-layer
disturbances are large enough to force growth of the boundary-layer
disturbance and provoke early transition.
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The theoretical study of Reshotko and Khan13 and the asymp-
totic analysis of Sokolov14 showed that the entropy layer on a blunt
plate leads to destabilization of the second boundary-layer mode,
which may be relevant to the transition reverse. Another possibility
is associated with instability of the entropy layer itself. Reshotko
and Khan13 and Fedorov15 performed linear stability analyses of the
entropy layer on a blunt plate and showed that the entropy layer is
inviscidly unstable due to the presence of the generalized inflection
point of the mean-flow profile. However, the numerical examples in
Ref. 15 indicated very small growth rates of the inviscid mode. This
is consistent with hot-wire measurements, which showed very little
growth of small disturbances in the entropy layer. These studies led
to the conjecture that the linear growth of initially small disturbances
in the entropy layer is too weak to produce disturbances of large am-
plitude, which could trigger a forced situation in the boundary layer.

Another scenario may be associated with bypass of the lin-
ear phase. Because freestream perturbations effectively penetrate
through the bow shock, they can excite entropy-layer disturbances
of relatively high initial amplitudes. Their nonlinear evolution may
be essentially different from that predicted by linear stability the-
ory. Interaction of the intensive entropy-layer disturbances with the
boundary layer may also be quite different from the case of small
perturbations. This motivated us to investigate linear and nonlinear
dynamics of the entropy-layer disturbances. To illuminate physical
aspects of the problem and minimize mathematical complexity, the
body is chosen to be a flat plate with a blunt leading edge.

II. Mean Flow and Linear Stability Analysis
Consider a supersonic flow of a perfect gas over a blunted flat

plate with the nose radius r as schematically shown in Fig. 1.
In the nose region ∼r , the curved bow shock leads to forma-
tion of the entropy layer. Farther downstream, at the distance L
from the leading edge, the entropy-layer thickness is of the or-
der of δe ∼ r , whereas the laminar boundary-layer thickness is
δ ∼ √

(µ∞L/ρ∞U∞). In the region 1 � L/r � Rer (where the nose
Reynolds number Rer = rρ∞U∞/µ∞ is assumed to be large), a two-
dimensional weakly nonparallel rotational inviscid flow is formed in
the entropy layer, whose thickness is much larger than the boundary-
layer thickness. Our objective is to analyze the stability of the
entropy-layer flow in this intermediate region, which is located
far downstream from the leading edge and far upstream from the
entropy-layer swallowing.

The longitudinal and vertical coordinates are made nondimen-
sional as x = x∗/r and y = y∗/r ; the flow velocity components U
and V , density ρ, temperature T , and pressure P are referenced
to their freestream values. Following the asymptotic analyses of
Yakura16 and Van Dyke17 (also Ref. 13), we can represent the mean-
flow characteristics in the entropy layer as

U = U (y) + O(ε0ε) + O
(
ε2

0

)
(1a)

V = O(ε0ε) + O
(
ε2

0

)
(1b)

P = 1 + O
(
ε2

0ε
)

(1c)

T = T (y) + O(ε0ε) + O
(
ε2

0

)
(1d)

where ε0 = r/L and ε = L/[r
√

(Lρ∞U∞/µ∞)] are small parame-
ters; ε ∼ δ/L . In the leading approximation, the entropy-layer pro-

Fig. 1 Flow scheme over a blunt flat plate.

files are expressed in the analytical form13

T (y) =
[

1 − 2(M2 − 1)2

(γ + 1)M2(M2 − 1 + ψ2)

]

×
[

1 + 2γ (M2 − 1)2

(γ + 1)(M2 − 1 + M2ψ2)

]1/γ

(2)

U (y) =
[

1 − 2(T − 1)

(γ − 1)M2

] 1
2

(3)

y =
∫ ψ

0

T

U
dψ (4)

Because y∗ = r y, the entropy-layer thickness is proportional to the
nose radius, whereas the nondimensional profiles T (y) and U (y)
do not depend on the nose radius. They are functions of M and γ
only.

As an example, Fig. 2 shows the temperature and velocity distribu-
tions across the entropy layer for the freestream Mach number M = 6
and γ = 1.4. The mean-flow temperature is highly nonuniform
across the entropy layer, whereas the streamwise velocity variation
is relatively small. These profiles have the generalized inflection
point yin ≈ 2.775, at which d[(dU/dy)/T ]/dy = 0, which provides
a sufficient condition for the existence of unstable disturbances.18,19

a)

b)

Fig. 2 Distributions across the entropy layer, M = 6 and γ = 1.4:
a) velocity and b) temperature.
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The mean flow characteristics do not depend on the longitudinal
coordinate x in the region considered herein. This allows us to use
stability theory for parallel flows. A two-dimensional disturbance is
expressed in the elementary-wave form

(u′, v′, p′, θ ′) = εa( f, αϕ, π, θ) exp(iαx − iωt) (5)

where the amplitude εa is assumed to be small. The distributions
of disturbance characteristics across the entropy layer are approxi-
mated as15

( f, ϕ, π, θ) = ( f0, ϕ0, π0, θ0) + O(ε0ε) + O(ε2) + O
(
ε2

0

)
(6)

In the first-order approximation, the amplitude function is a solution
of the well-known ordinary differential equation (ODE) system20

describing inviscid stability of parallel flows:

dϕ0

dy
− dU

dy

ϕ0

U − c
= −i

U − c

γ

[
1 − T

M2(U − c)2

]
π0 (7a)

dπ0

dy
= −iγ M2α2 U − c

T
ϕ0 (7b)

(ϕ0, π0) → 0, y → ∞ (7c)

ϕ0 = 0, y = 0 (7d)

where the complex phase speed is c = ω/α.
The system (7a–7d) is integrated numerically using the fourth-

order Runge–Kutta method. The integration starts in the freestream
and continues to the wall. To resolve the singularity at the criti-
cal point yc : U (yc) = c, the numerical integration is carried out
along a contour in the complex y plane. For unstable disturbances,
the critical point is bypassed from below in the complex y plane
as described in Ref. 20. With the number of grid points N = 101,
the eigenvalue α is calculated with the accuracy ∼ 10−6. Figure 3
shows the wave number αr and the spatial growth rate −αi of the
unstable entropy-layer mode as a function of the nondimensional
frequency ω = ω∗U∞/r for the Mach number M = 6. It is seen that
the phase speed cr = ω/αr is nearly constant. Its value corresponds
to the critical point yc : U (yc) = cr , which is located in the vicinity

Fig. 3 Characteristics of unstable disturbance for the entropy layer:
M = 6 and γ = 1.4.

Fig. 4 Profiles of the streamwise velocity disturbance u(y) forω = 0.145
and α= 0.15549 −− i0.0023: M = 6 and γ = 1.4.

Fig. 5 Profiles of the vertical velocity disturbance v(y); parameters are
the same as in Fig. 3.

Fig. 6 Pressure disturbance profile π(y); parameters are the same as
in Fig. 3.

of the inflection point yin. The disturbance growth rate is relatively
small, that is, 10 times the amplification of the most unstable wave
occurs on the length of the order of 103r . This is consistent with
the hot-wire anemometry data,10 showing that the mass-flow fluctu-
ation amplitudes in the entropy layer above the boundary layer are
neutrally stable or slightly unstable. Similar results were obtained
in Ref. 15 for the Mach number range 1.5 < M < 6.

The most unstable disturbance has the frequency ω = 0.145 and
the eigenvalue α = 0.15549 − i0.0023. Its eigenfunctions are shown
in Figs. 4–7. The temperature oscillations of the entropy-layer mode
are much larger than the velocity and pressure perturbations. Max-
imums of the temperature and mass-flux disturbances are reached
in the critical layer located near the point yc ≈ 2.5. The pressure
and vertical velocity distributions are similar to those of the first
mode calculated for a supersonic boundary layer at high Reynolds
numbers.13

III. Conservation Element/Solution Element
Euler Method

Recently, Chang et al.21 developed a new numerical method,
the space-time conservation element and solution element (CE/SE
method), that allows for accurate simulation of unsteady inviscid
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Fig. 7 Temperature disturbance profile θ(y); parameters are the same
as in Fig. 3.

Fig. 8 Structured staggered grid.

flows including weak acoustic waves and strong shock waves. It was
demonstrated22 that the CE/SE method can be successfully used for
linear and nonlinear stability analyses of compressible mixing lay-
ers. Hereafter, we apply the CE/SE method to the stability analysis
of the entropy layer flow discussed in Sec. II.

We choose a rectangular computational domain in the x–y plane:
0 ≤ X ≤ 300 and 0 ≤ Y ≤ 15. Figure 8 shows two sets of the stag-
gered mesh, �1 and �2. The first set of points (solid) corresponds to
the time levels �t/2, 3�t/2, 5�t/2, . . . . The second set of points
(hollow) corresponds to the time levels 0, �t , 2�t, . . . . Each node
point of sets �1 and �2 has three neighbor points from the previous
half-time step. The Euler equations are written as an integral conser-
vation law in (X, Y, t) for a CE composed of the surface segments
of the neighboring SEs. Interested readers are referred to Ref. 21
for details.

A uniform grid 300 × 150 is used with �X = 1 and �Y = 0.1.
The initial flowfield at M = 6 is defined in accordance with the mean
velocity and temperature profiles given by Eqs. (2) and (3). At the
upper and downstream boundaries of the computation domain, we
impose nonreflecting boundary conditions.21 The boundary condi-
tions on the wall are formulated assuming that the flowfield below
the wall is the mirror image of the flow above the wall. The inflow
conditions are prescribed as the mean flow plus a periodic-in-time
disturbance. The dimensionless frequency is chosen to beω = 0.145,
and the disturbance profiles are chosen as a solution of the linear
stability equations (7) (Figs. 4–7). Afterward, the Euler equations
are solved with time step �t = 0.08.

Figure 9 shows the mass-flux disturbance field with the initial
amplitude 0.565%. In these calculations, we used the CE/SE Eu-
ler method with a weighted α − ε scheme. (Its details are given in
Ref. 21.) The weighted index α = 0, and the parameter ε = 0.2, as
was chosen for the analysis of the mixing layer in Ref. 22. Figure 10
shows the mass-flux amplification extracted from the numerical sim-
ulation and the linear stability theory. An exponential fit of the com-
putation corresponds to the imaginary part αi = −0.00236, whereas

Fig. 9 Mass-flux disturbance field in the entropy layer: M = 6,
ω = 0.145, and t = 150.

Fig. 10 Comparison of the mass-flux disturbance amplifications:
Y = 2.75.

the linear stability theory predicts αi = −0.00230. Notwithstand-
ing very small growth rates, the agreement is very good. Figure 11
shows a comparison of profiles of the mass-flux disturbance, ob-
tained from numerical solution of the Euler equation X = 176 and
t = 500, with the disturbance resulting from the linear stability anal-
ysis. The agreement between the profiles is also very good. These
comparisons indicate that the CE/SE method allows for simulation
of very small disturbances with very slow growth. Note that the
growth rates of the mixing-layer disturbances analyzed in Ref. 22
were much higher, which was much easier for numerical simula-
tions. Summarizing, we conclude that the CE/SE method is an ef-
fective tool for stability analysis of the entropy-layer flow.

When the initial amplitude to a parameter is changed, nonlinear
dynamics of the entropy-layer disturbances can be investigated by
means of direct numerical solution of the Euler equations. The non-
linear effect is demonstrated in Fig. 12 for a few initial amplitudes
εm of the mass-flux disturbance. One can see a trend to saturation
of the disturbances with the initial amplitude increase.

It is important to test the grid effect on numerical solutions for
disturbances of high amplitudes. We compare the results obtained
with the original grid (grid 1) and the fine grid (grid 2): �X = 0.5,
�Y = 0.05, and �t = 0.04. Figures 13 and 14 show the mass-flux
disturbance field when the initial amplitude is 8.47%. Although the
flowfields are similar, one can see their differences in the down-
stream region where the disturbance amplitude is approximately
10%. Figures 15 and 16 show the time signals at X = 26 and



FEDOROV AND TUMIN 93

Fig. 11 Comparison of the mass-flux disturbance profiles: X = 176 and
t = 500.

Fig. 12 Effect of the initial amplitude.

Fig. 13 Mass-flux disturbance field in the entropy layer: εm = 8.47%
(grid 1).

Fig. 14 Mass-flux disturbance field of in the entropy layer: εm = 8.47%
(grid 2).

Fig. 15 Time signal: εm = 8.47% and X = 26.

Fig. 16 Time signal: εm = 8.47% and X = 276.
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X = 276 measured at the level Y = 2.75. There is no noticeable
difference between these signals at X = 26, whereas small distor-
tions are observed at the station X = 276. This indicates that one
can use grid 1 for correct simulation of disturbances with mass-flux
amplitudes less than 9%.

IV. Conclusions
The linear stability problem for the entropy layer over a blunted

plate was analyzed using the conventional stability theory and direct
numerical solution. The Euler equations were solved by the space–
time CE/SE method. It was shown that the latter method provides
very accurate simulations of the entropy-layer disturbances with
small amplitude and slow growth. It was shown that nonlinear effects
lead to a trend of disturbance saturation.

As a next step, the CE/SE method can be used for the direct
numerical simulation of a very interesting case, one associated with
the entropy-layer disturbance entering into the boundary layer. We
believe this will help to understand the physics of the transition
reverse on blunted bodies at hypersonic speeds.
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